[Libre OJ]6014「网络流 24 题」最长 k 可重区间集题解

主要思路

这道题还是很妙的,我只想到了最大费用最大流之后就想不动了。

我们在这里介绍边数为\(O(n)\)级别的解法。考虑把所有的端点离散化为\(2n\)个连续的点,然后相邻端点\(i, i+1\)相互连接流量无限、费用为零的边。考虑区间左右端点,左端点连到右端点,流量为\(1\),费用为区间长度。最后源点连左端点,汇点连到右端点。

这样就可以强制满流,且费用最大。

继续阅读[Libre OJ]6014「网络流 24 题」最长 k 可重区间集题解

[Fortuna OJ]Jul 5th – Group A 解题报告 / 集训队互测 2013

A – 家族

这道题真的是送分题(快要想出来直接暴力枚举+并查集的时候去看了题解,最后发现就是这么 sb)。

考虑枚举频段区间\([L, R]\)(将边进行排序,确定下界之后再枚举上界),这个地方是\(O(m^2)\)的。每次枚举下界的时候都要初始化并查集,然后合并两个集合的时候按照大小来修改答案就行了。

继续阅读[Fortuna OJ]Jul 5th – Group A 解题报告 / 集训队互测 2013

网络流

定义

在有向图中,有唯一的源地(入度为 0)和汇点(出度为 0),每一条边都有非负的容量,且整张图都会保证平衡状态。这样的图叫做网络流图。

基本网络流算法

最大流 – Dinic

每秒钟每条管道流动的液体最多。常用的算法是 Dinic。先做一次 BFS 划分层次,再用 DFS 来进行流动。Dinic 算法就是在网络图上对残存网络进行利用求得最大流。

其中值得一提的是,Dinic 算法中有一个优化方式可以快速求最大流——当前弧优化。当前弧优化可以在每次找残余网络之前记录遍历到的 head 指针,避免不必要的遍历。

继续阅读网络流

P3980:[NOI2008]志愿者招募题解

解法

我们可以把整个工作流程想像成网络流上的一条链:第\(i\)天连接到第\(i+1\)天的,流量为\(INF – A_i\),费用为\(0\);其中第\(n+1\)连接到汇点,流量为\(INF\),费用为\(0\);源点连接到点\(1\),流量为\(INF\),费用为\(0\)。

对于每一组志愿者\((s_i, t_i, c_i)\),考虑连边\((s_i, t_i + 1, INF, c_i)\),这样意味着整个工作流中可以从额外管道中获取流量,将最大流调整到\(INF\)。

所以求得的最小费用肯定是在最大流量\(INF\)的前提下求得的,即为答案。

继续阅读P3980:[NOI2008]志愿者招募题解