Yali 模拟赛 #1 – 解题报告

A – 神奇的位运算

想了半天,最后一看是离线来维护,直接吐血。

首先大概能想到用本质不同的异或和与区间异或和进行异或得到答案。因为这样可以把出现次数为奇数次的给过滤掉并得到最终的答案。考虑如何得到本质不同的区间异或和,一种方式是使用主席树进行维护,另一种方式是进行离线维护。我们可以在树状数组中维护本质不同的前缀异或:我们把每个数往尽可能近的地方塞,这个时候就需要用 map 来判断要不要移动。

继续阅读Yali 模拟赛 #1 – 解题报告

P1447:[NOI2010]能量采集题解

解法

这道题是一道裸题,考察莫比乌斯反演和 Dirichlet 卷积的知识。

在这里我们规定\(n<m\),这两者调换不会对答案产生影响。然后我们来观察这个计数规律,发现每一个点对答案的贡献至少为\(1\),附加的贡献其实就是当前线段上除了本身的整点(整数坐标点)个数的两倍,换句话说就是:

\[ ans = \sum_{i = 1}^n \sum_{j = 1}^m 1 + 2( gcd(i, j) – 1 ) \]

继续阅读P1447:[NOI2010]能量采集题解

莫比乌斯反演与杜教筛

简述

省选级别以上的 OI 赛事中的数学题,相比于 NOIp 的数学题来说要难很多。这篇文章我来记录学习了莫比乌斯反演和杜教筛之后的一些心得。以下是本文大纲:

继续阅读莫比乌斯反演与杜教筛