[Fortuna OJ]4682「GDOI2017模拟8.11」生物学家

主要思路

这道题原题解作者的思路非常的清晰。我来阐述一下。

首先思考答案的意义,一定是总的权值和减去:

  • 变性花费
  • 不要的赞助费
  • 喝茶费用

我们可以用上面这三个元素组一个网络流,计算最小割使答案最大。

考虑将源点连入雌性,雄性连入雄性,流上限就是变性花费:如果将这种边割掉,那么就是不需要进行变性。考虑朋友的边,如果倾向于变雌性,源点连入,向所有的对应编号连边;如果雄性,连入汇点,所有对应编号的向该朋友连边。

继续阅读[Fortuna OJ]4682「GDOI2017模拟8.11」生物学家

网络流

定义

在有向图中,有唯一的源地(入度为 0)和汇点(出度为 0),每一条边都有非负的容量,且整张图都会保证平衡状态。这样的图叫做网络流图。

基本网络流算法

最大流 – Dinic

每秒钟每条管道流动的液体最多。常用的算法是 Dinic。先做一次 BFS 划分层次,再用 DFS 来进行流动。Dinic 算法就是在网络图上对残存网络进行利用求得最大流。

其中值得一提的是,Dinic 算法中有一个优化方式可以快速求最大流——当前弧优化。当前弧优化可以在每次找残余网络之前记录遍历到的 head 指针,避免不必要的遍历。

继续阅读网络流

LibreOJ 6007:「网络流 24 题」方格取数题解

解法

这道题可以看作是网络流的一个模型了。我们把棋盘染色成红色和黑色。然后,源点连红色点,最大流限制为红点的点权;黑点全部连到汇点,最大流限制为黑点的点权。答案为点权总和减去最大流。

我们可以尝试理解一下:对于\(m = 1, n = 2\)的情况:

\[ [ x, y ] \]

那么假设\(x\)为黑点,\(y\)为红点,在网络上是这样的:

我们会发现最大流只会留下较小的一项。这样的话,我们可以感性推广到任何情况,大难点权和减掉最小割就行了。

继续阅读LibreOJ 6007:「网络流 24 题」方格取数题解

LibreOJ 6002:「网络流 24 题」最小路径覆盖题解

思路

这个模型有点儿牛逼哦。

我们先来建一个网络。我们把我们得到的\(n\)个点复制一遍,变成第\(i\)与第\(i+n\)个点。让源点全部连接点域\([1,n]\)内的点,让点域\([n+1,2n]\)内的点全部连接汇点。如果有边\((u,v)\),连接边\((u,v+n)\)。这里面所有的边容量都是\(1\)。求最大流做差即可。

我们把网络分层(把它想成 3D 的形状),第一层是源点和原生点,第二层是复制点和汇点。这两层之间的边都相当于有向无环图里的单向边,求最大流即可知道哪些不是路径覆盖中的点。

代码

// LOJ6002.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 200 * 3, INF = 0x3f3f3f3f;
int n, m, head[MAX_N], current, upward[MAX_N], s, t, dep[MAX_N], cur[MAX_N], tmpx, tmpy;
bool tag[MAX_N];
struct edge
{
    int to, nxt, weight;
} edges[6000 << 2];
void addpath(int src, int dst, int weight)
{
    edges[current].to = dst, edges[current].weight = weight;
    edges[current].nxt = head[src], head[src] = current++;
}
void add(int src, int dst, int w) { addpath(src, dst, w), addpath(dst, src, 0); }
bool bfs()
{
    memset(dep, 0, sizeof(dep));
    queue<int> q;
    q.push(s), dep[s] = 1;
    while (!q.empty())
    {
        int u = q.front();
        q.pop();
        for (int i = head[u]; i != -1; i = edges[i].nxt)
            if (edges[i].weight > 0 && !dep[edges[i].to])
                q.push(edges[i].to), dep[edges[i].to] = dep[u] + 1;
    }
    return dep[t] != 0;
}
int dfs(int u, int flow)
{
    if (u == t || flow == 0)
        return flow;
    for (int &i = cur[u]; i != -1; i = edges[i].nxt)
        if (edges[i].weight > 0 && dep[edges[i].to] == dep[u] + 1)
        {
            int to = edges[i].to, fl = dfs(to, min(edges[i].weight, flow));
            if (fl > 0)
            {
                upward[u] = edges[i].to;
                if (u != s)
                    tag[edges[i].to - n] = true;
                edges[i].weight -= fl, edges[i ^ 1].weight += fl;
                return fl;
            }
        }
    return 0;
}
int Dinic()
{
    int ans = 0;
    while (bfs())
    {
        for (int i = 1; i <= 2 * n + 2; i++)
            cur[i] = head[i];
        while (int fl = dfs(s, INF))
            ans += fl;
    }
    for (int i = 1; i <= n; i++)
        if (!tag[i])
        {
            int p = i;
            printf("%d ", p);
            while (upward[p] && upward[p] != t)
                printf("%d ", upward[p] - n), p = upward[p] - n;
            printf("\n");
        }
    return ans;
}
int main()
{
    memset(head, -1, sizeof(head));
    scanf("%d%d", &n, &m);
    s = n * 2 + 1, t = s + 1;
    for (int i = 1; i <= n; i++)
        add(s, i, 1), add(i + n, t, 1);
    for (int i = 1; i <= m; i++)
    {
        scanf("%d%d", &tmpx, &tmpy);
        add(tmpx, tmpy + n, 1);
    }
    printf("%d", n - Dinic());
    return 0;
}

P2891:[USACO2007OPEN]吃饭 Dining 题解

思路

一道比较裸的最大流。我们创建源点\(s=0\),让食物从源点连边到每一个牛,牛再创建副本节点(当然主节点和副本节点联通,这样保证只吃一个)连接饮料节点,在连接到汇点。求最大流即可。

代码

// P2891.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 1000, MAX_M = 10000, INF = 0x3f3f3f3f;
int head[MAX_N], current, n, f, d, tot, dep[MAX_N], s, t, tmp;
struct edge
{
    int to, nxt, weight;
} edges[MAX_M << 1];
void addpath(int u, int v, int w)
{
    edges[current].to = v, edges[current].nxt = head[u];
    edges[current].weight = w, head[u] = current++;
}
void add(int u, int v, int w) { addpath(u, v, w), addpath(v, u, 0); }
bool bfs()
{
    memset(dep, 0, sizeof(dep));
    queue<int> q;
    q.push(s), dep[s] = 1;
    do
    {
        int u = q.front();
        q.pop();
        for (int i = head[u]; i != -1; i = edges[i].nxt)
            if (edges[i].weight > 0 && !dep[edges[i].to])
                dep[edges[i].to] = dep[u] + 1, q.push(edges[i].to);

    } while (!q.empty());
    return dep[t] != 0;
}
int dfs(int u, int flow)
{
    if (u == t || flow == 0)
        return flow;
    for (int i = head[u]; i != -1; i = edges[i].nxt)
        if (dep[edges[i].to] == dep[u] + 1 && edges[i].weight > 0)
        {
            int to = edges[i].to;
            int di = dfs(to, min(flow, edges[i].weight));
            if (di > 0)
            {
                edges[i].weight -= di, edges[i ^ 1].weight += di;
                return di;
            }
        }
    return 0;
}
int dinic()
{
    int ans = 0;
    while (bfs())
        while (int di = dfs(s, INF))
            ans += di;
    return ans;
}
int main()
{
    memset(head, -1, sizeof(head));
    scanf("%d%d%d", &n, &f, &d);
    s = 0, t = n * 2 + f + d + 1;
    for (int i = 1; i <= f; i++)
        add(s, i, 1);
    for (int i = 1; i <= n; i++)
        add(i + f, i + f + n, 1);
    for (int i = 1; i <= d; i++)
        add(i + 2 * n + f, t, 1);
    for (int i = 1; i <= n; i++)
    {
        int fm, dm;
        scanf("%d%d", &fm, &dm);
        while (fm--)
            scanf("%d", &tmp), add(tmp, i + f, 1);
        while (dm--)
            scanf("%d", &tmp), add(f + i + n, tmp + 2 * n + f, 1);
    }
    printf("%d", dinic());
    return 0;
}

 

图论学习笔记

强连通分量

一些性质

  1. 有向图中,每一个点仅属于一个强连通分量。
  2. 强连通分量具有传递性。
  3. 极大的强连通分量指的是一个强连通分量无法继续扩大。

Tarjan 算法的一些细节

  1. 当一个节点的 DFN 和 LOW 相等时,则发现了一个强连通分量,进行弾栈。

一些例题

P2002:消息扩散题解

求割点

类似于之前的 Tarjan 算法,只要\(dfn[u]\leq low[u]\),就可以认为这个点是一个割点。理解:下游的点无法除了通过点 u 的路径到达上游 dfn 更小的点,那么这个就是割点。但是还需要考虑点\(u\)为根节点的情况,因为如果点\(u\)为根的话,那么只要子树大于二就算是一个割点,因为子树间的联通必须需要根节点作为枢纽。

模板题代码:

// P3388.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 20010, MAX_M = 100010;
int head[MAX_N], current, n, m, tmpx, tmpy, low[MAX_N], dfn[MAX_N], tot;
bool ans[MAX_N];
struct edge
{
    int to, nxt;
} edges[MAX_M << 1];
void addpath(int src, int dst)
{
    edges[current].to = dst, edges[current].nxt = head[src];
    head[src] = current++;
}
void tarjan(int u, int fa)
{
    low[u] = dfn[u] = ++tot;
    int child = 0;
    for (int i = head[u]; i != -1; i = edges[i].nxt)
    {
        if (!dfn[edges[i].to])
        {
            tarjan(edges[i].to, fa), low[u] = min(low[u], low[edges[i].to]);
            if (low[edges[i].to] >= dfn[u] && u != fa)
                ans[u] = true;
            if (u == fa)
                child++;
        }
        low[u] = min(low[u], dfn[edges[i].to]);
    }
    if (child >= 2 && u == fa)
        ans[u] = true;
}
int main()
{
    memset(head, -1, sizeof(head));
    scanf("%d%d", &n, &m);
    int cnt = 0;
    for (int i = 1; i <= m; i++)
        scanf("%d%d", &tmpx, &tmpy), addpath(tmpx, tmpy), addpath(tmpy, tmpx);
    for (int i = 1; i <= n; i++)
        if (!dfn[i])
            tarjan(i, i);
    for (int i = 1; i <= n; i++)
        if (ans[i])
            cnt++;
    printf("%d\n", cnt);
    for (int i = 1; i <= n; i++)
        if (ans[i])
            printf("%d ", i);
    return 0;
}

双联通分量

点双连通分量

概念:在无向图中,对于点对\(u,v\),在图上删除除\(u,v\)以外的任意一个点,仍然联通,那么称这个点对为点双联通分量。

边双连通分量

概念:在无向图中,对于点对\(u,v\),在图上任意删除一条边,\(u,v\)仍连通,则称其为边双连通分量。

二分图

https://www.renfei.org/blog/bipartite-matching.html

性质

二分图中,选取最少的点数,使这些点和所有的边都有关联(把所有的边的覆盖),叫做最小点覆盖。

二分图最小点覆盖 = 二分图最大匹配

二分图最大点独立集 = 总点数 – 二分图最大总匹配

例题:[USACO2006NOV]Asteriod,[Usaco2005 jan]Muddy Fields

匈牙利算法

模板地址:P3386 【模板】二分图匹配

bool dfs(int u, int tm)
{
    for (int i = head[u]; i != -1; i = edges[i].nxt)
    {
        int to = edges[i].to;
        if (dfn[to] != tm)
        {
            dfn[to] = tm;
            if ((!match[to]) || dfs(match[to], tm))
            {
                match[to] = u;
                return true;
            }
        }
    }
    return false;
}

我个人认为这个是相当精妙的一个写法,可以将“继续匹配”和“向上协商”完美的结合在一起,非常的优秀。

2-SAT

此模型可以用于求出多个条件约束下变量的解集。可以通过某些矛盾关系推出可行关系做有向边,Tarjan 染色即可。

例题:HDU3062:Party 题解