[Fortuna OJ]4682「GDOI2017模拟8.11」生物学家

主要思路

这道题原题解作者的思路非常的清晰。我来阐述一下。

首先思考答案的意义,一定是总的权值和减去:

  • 变性花费
  • 不要的赞助费
  • 喝茶费用

我们可以用上面这三个元素组一个网络流,计算最小割使答案最大。

考虑将源点连入雌性,雄性连入雄性,流上限就是变性花费:如果将这种边割掉,那么就是不需要进行变性。考虑朋友的边,如果倾向于变雌性,源点连入,向所有的对应编号连边;如果雄性,连入汇点,所有对应编号的向该朋友连边。

继续阅读[Fortuna OJ]4682「GDOI2017模拟8.11」生物学家

网络流

定义

在有向图中,有唯一的源地(入度为 0)和汇点(出度为 0),每一条边都有非负的容量,且整张图都会保证平衡状态。这样的图叫做网络流图。

基本网络流算法

最大流 – Dinic

每秒钟每条管道流动的液体最多。常用的算法是 Dinic。先做一次 BFS 划分层次,再用 DFS 来进行流动。Dinic 算法就是在网络图上对残存网络进行利用求得最大流。

其中值得一提的是,Dinic 算法中有一个优化方式可以快速求最大流——当前弧优化。当前弧优化可以在每次找残余网络之前记录遍历到的 head 指针,避免不必要的遍历。

继续阅读网络流

[Fortuna OJ]Jul 4th – Group A 解题报告

A – 非回文数字

这道题还没写,是一道数位 DP,推荐记忆化搜索。

B – 管道

这道题是一道相当好的题目。

首先对于\(m = n – 1\)的情况,也就是树的形态下,可以考虑自下向上推,也就是从叶子节点开始推起,参考代码中 Toposort 的写法。然后,对于\(m > n\)的情况可以直接输出\(0\),因为这个方程组并不存在唯一的解:\(m\)个未知数仅提供\(n\)个条件,这样是不成立的。

最后考虑\(m = n\)的情况。这种情况就是基环树了。首先,Toposort 会把支链上的答案全部统计完毕,并且合并到环上的点。最后,我们唯一要多做的事情,就是处理环上的方程组。考虑一个这样的环:

继续阅读[Fortuna OJ]Jul 4th – Group A 解题报告

LibreOJ 6007:「网络流 24 题」方格取数题解

解法

这道题可以看作是网络流的一个模型了。我们把棋盘染色成红色和黑色。然后,源点连红色点,最大流限制为红点的点权;黑点全部连到汇点,最大流限制为黑点的点权。答案为点权总和减去最大流。

我们可以尝试理解一下:对于\(m = 1, n = 2\)的情况:

\[ [ x, y ] \]

那么假设\(x\)为黑点,\(y\)为红点,在网络上是这样的:

我们会发现最大流只会留下较小的一项。这样的话,我们可以感性推广到任何情况,大难点权和减掉最小割就行了。

继续阅读LibreOJ 6007:「网络流 24 题」方格取数题解

LibreOJ 6005:「网络流 24 题」最长递增子序列题解

主要思路

这道题还是很有意思的,建图方式非常的巧妙。首先我们先把第一问的 DP 用 \(O(n \log n)\) 的时间求解一下,顺便搞到一个数组\(f[i]\),含义是以\(i\)为结尾的最长子序列长度。建图的时候要注意的是,每一个位置对应的点要拆成两个:这是为了保持答案的唯一性。所以对于\(f[i]=1\)的点\(i\),连边\((s,i)\);对于\(f[i]=k\)的点\(i\),连边\((i+n,t)\)。之后,如果对于\((u,v), f[v] = f[u] + 1, arr[u] \leq arr[v]\)进行连边,跑个最大流就可以出答案了。

第三问其实跟第二问的差不多,只需要把点\(1\)和点\(n\)的外向边(到源点或者是汇点的边)的最大流限制改成无穷大即可。

继续阅读LibreOJ 6005:「网络流 24 题」最长递增子序列题解