二项式反演

对称的反演

二项式反演的主要内容就是:

\[ f_n = \sum_{i = 0}^n (-1)^i {n \choose i} g_i \longleftrightarrow g_n = \sum_{i = 0}^n (-1)^i {n \choose i} f_i \]

这个反演的式子非常的优美:在这种形式下,它们是对称的。当然,亦可以写作:

\[ f_n = \sum_{i = 0}^n {n \choose i} g_i \longleftrightarrow g_n = \sum_{i = 0}^n (-1)^{n – i} {n \choose i} f_i \]

继续阅读二项式反演

[Fortuna OJ]Aug 1st – Group A 解题报告

A – 水叮当的舞步

真的是玄妙重重。

我们先思考正常的暴力搜索:枚举每一次按下的颜色,然后检查继续更新。考虑用 IDA* 优化这个过程,首先估值函数就是剩下的颜色个数,因为至少需要更新这些颜色才有可能到达最终状态。然后注意控制 BFS 求连通块的个数的优化就行了。很好的一道题。

继续阅读[Fortuna OJ]Aug 1st – Group A 解题报告

BZOJ 3456:城市规划题解

题面

注意:这道题在 BZOJ 上是权限题,我是在 JZOJ 上做的。

刚刚解决完电力网络的问题,阿狸又被领导的任务给难住了。

刚才说过, 阿狸的国家有\(n\)个城市,现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通。

为了省钱,每两个城市之间最多只能有一条直接的贸易路径。对于两个建立路线的方案, 如果存在一个城市对,在两个方案中是否建立路线不一样,那么这两个方案就是不同的,否则就是相同的。现在你需要求出一共有多少不同的方案。

好了,这就是困扰阿狸的问题。换句话说,你需要求出\(n\)个点的简单(无重边无自环)无向连通图数目。

由于这个数字可能非常大,你只需要输出方案数 mod 1004535809(479 * 2 ^21 + 1) 即可。

继续阅读BZOJ 3456:城市规划题解

多项式乘法 & 快速傅立叶变换

简述

在信息学竞赛中,多项式乘法出现得非常的多,朴素算法的时间复杂度为\(O(n^2)\),成为了许多毒瘤出题人卡指数的地方。所以,用快速傅立叶变换(FFT, Fast Fourier Transform)来优化多项式乘法是很有必要的。接下来,我会由浅入深地来介绍这两者与其之间的关系。

继续阅读多项式乘法 & 快速傅立叶变换