「杂题集」- 2019年9月25日

[POI2008]BLO

一眼可以了解到是一道割点题。对于不是割点的情况,那么被计算的点对一定包含此点本身,又因为有序,所以贡献就是\(2(n – 1)\)。如果是割点的话,就比较麻烦,分下面几个来算:

  • 此点延伸出去的点对。
  • 连通块之间的点对。
  • 本身就无法互通的点对。

第一个很好算,是\(2(n – 1)\)。第二个,在 Tarjan 枚举搜索子树的时候计算子树大小和全图补集的乘积(注意,这里会多计算一遍与点\(u\)的点对,所以我们第一个改成算\(n – 1\));第三个,算「当前整颗搜索树与图的补集大小」与「搜索树的大小」的乘积。

综合起来就是,对于点\(u\):

\[ ans_u = \sum_{k \in son(u)} (n – size(k)) \times size(k) + (n – 1) + (n – 1 – \sum_{k \in son(u)} size(k)) \times (1 + \sum_{k \in son(u)} size(k)) \]

继续阅读「杂题集」- 2019年9月25日

[POI2007]BIU-Offices 题解

主要思路

正好在《组合数学》上看过一个结论:反图形成的连通块的点在原图一定处处连通。证明很简单:考虑点对\((u, v)\),如果点对之间在反图中不连通显然是在原图联通的;如果在反图中连通,有一个不在当前点集的点使得他们连通。所以,我们只需要构建反图,根据「不与本点相连的点都在本连通块内」进行 BFS 即可。

继续阅读[POI2007]BIU-Offices 题解

「杂题集」- 2019年9月19日

方格取数

看一眼复杂度,\(O(nm)\)级别的,考虑两个循环的 DP。分析整个题面之后发现,我们穿过边界时,当且仅当另一个连通块的权值比当前的大,否则便不会为了穿过边界而损失当前金块。所以,我们做一个 DP 一样的东西:因为发现每个格子只能走一遍,那么在每一列你只能选择一直向上走和一直向下走,所以这个 DP 便没了后效性,然后再处理连通块之间的连接判断就做完了。

继续阅读「杂题集」- 2019年9月19日